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ABSTRACT

Deep Packet Inspection (DPI) systems are essential for securing

modern networks (e.g., blocking or logging abnormal network con-

nections). However, DPI systems are known to be vulnerable in

their implementations, which could be exploited for evasion attacks.

Due to the critical role DPI systems play, many efforts have been

made to detect vulnerabilities in the DPI systems through man-

ual inspection, symbolic execution, and fuzzing, which suffer from

either poor scalability, path explosion, or inappropriate feedback.

In this paper, based on our observation that a DPI system usu-

ally reaches an abnormal internal state before a forbidden packet

passes through it, we propose a fuzzing framework that prioritizes

inputs/mutations which could trigger the DPI system’s abnormal

internal states. Further, to avoid deep understanding of the DPI

systems under inspection (e.g., to identify the abnormal states), we

feed one pair of inputs to multiple DPI systems and check whether

the state changes of these DPI systems are consistent — an incon-

sistent internal state change/transference in one of the DPI systems

indicates a new abnormal state is reached in the corresponding

DPI system. Naturally, inputs that trigger new abnormal states are
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preferentially selected for mutations to generate new inputs. Follow-

ing this idea, we develop StateDiver, the first fuzzing framework

that uses the state discrepancy between different DPI systems as

feedback to find more bypassing strategies. We make StateDiver

publicly available online. With the help of StateDiver, we tested 3

famous open-source DPI systems (Snort, Snort++, and Suricata) and

discovered 16 bypass strategies (8 new and 8 previously known).

We have reported all the vulnerabilities to the vendors and received

one CVE by the time of paper writing. We also compared State-

Diver with Geneva, the state-of-the-art fuzzing tool for detecting

DPI bugs. Results showed that StateDiver outperformed Geneva

at the number and speed of finding vulnerabilities, indicating the

ability of StateDiver to detect strategies bypassing DPI systems

effectively.

CCS CONCEPTS

• Security and privacy→ Intrusion detection systems; Net-

work security; • Software and its engineering→ Software test-

ing and debugging.
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1 INTRODUCTION

Deep Packet Inspection (DPI) is a powerful data-processing tech-

nique that inspects transport-level or application-level network

packets and may take necessary actions such as logging or blocking.

For example, if string “bad_url” is in the HTTP block list, DPI sys-

tem will tear down any HTTP connection that contains “bad_url”.

This technique has been widely used in modern network architec-

tures for various security purposes, including but not limited to
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malware detection [28], phishing-attack detection [32], remote ex-

ploits prevention [43], data leakage prevention [45], advertisement

injection [50], copyright enforcement [24] and even statistics [37].

Unfortunately, DPI systems contain security vulnerabilities that

allow attackers to bypass the detection. For example, due to CVE-

2019-18792 [7], Suricata [20], one of the most popular open-source

DPI systems, will accept malformed HTTP connections that contain

forbidden keywords. The vulnerabilities stem from the fact that

DPI systems usually implement customized network protocols for

high throughput and wide adoption [17, 47]. Due to the complexity

in network protocols, the customization is inevitably different from

the standards specified in hundred-page RFCs, which may lead to

severe security breaches [5, 6, 8]. It is emerging to detect these

vulnerabilities to enhance the strength of DPI systems.

Previous techniques for detecting DPI vulnerabilities fall into

three categories: manual construction, symbolic execution, and

fuzzing. Many well-known DPI vulnerabilities are identified

through manual efforts [38, 46]. This method relies on human expe-

rience and cannot effectively handle new DPI systems. Automatic

methods based on symbolic execution can systematically explore

the protocol state space to identify differences between DPI sys-

tems and other applications [47]. However, symbolic execution

consumes heavy resources and suffers from the path-explosion

problem [30, 33]. This hinders large-scale adoption of related tools

to test DPI systems.

In recent years, fuzzing has become a popular technique to ver-

ify program functionalities and detect vulnerabilities [1, 10, 12].

The key idea of fuzzing is to utilize proper dynamically collected

feedback to identify promising mutations from randomly gener-

ated inputs. By accumulating promising mutations, the fuzzer will

likely trigger program abnormal behaviors, like crashes or assertion

failures. Fuzzing techniques have been widely used to test a large

range of applications and reported thousands of bugs [13, 31, 42].

Researchers have built several fuzzing tools to help find vul-

nerabilities in DPI systems [25, 41, 52]. However, their designs

lack proper feedback mechanisms and may diminish the power of

fuzzing. For example, DPIFuzz is a generation-based fuzzer that

does not use any feedback mechanism [41]. TCPFuzz relies on low-

level code coverage as feedback which is too sensitive to identify

valuable mutations from less promising ones [52]. Geneva priori-

tizes inputs that trigger different server-side or DPI-side responses,

and may miss intermediate mutations that are necessary for final

bypasses [25]. We need a balanced feedback to highlight the most

important changes while not early dropping useful mutations.

Our analysis on previously known bypassing strategies reveals

that, before the packet containing forbidden keywords finally passes

through DPI systems, its predecessors in the mutation chain usually

have rendered the DPI system to reach an abnormal internal state.

A safe DPI version (i.e., free from the bug or with the bug fixed) will

not show such early changes in its internal state. Therefore, any

changes that trigger abnormal internal state should be prioritized

to increase the chance of reaching the final bypass. The state dis-

crepancy between multiple DPI systems or multiple DPI versions

could be a good feedback to help find more bypassing strategies.

In this paper, we propose StateDiver, a fuzzing framework that

automatically discovers DPI-bypass strategies using state discrep-

ancies. We make all the code of StateDiver publicly available on

GitHub [19]. Similar to previous tools, StateDiver relies on ran-

dom mutations of existing network packets to generate new inputs.

The key difference is that StateDiver performs state instrumenta-

tion in DPI systems to track their internal state transference. When

one new input renders the DPI system entering an abnormal state,

StateDiver will prioritize the input for further mutations.

However, without a deep understanding of the tested DPI sys-

tem, it is challenging for us to tell which of its internal states are

abnormal. Our solution to this problem is to monitor the execu-

tion of multiple DPI systems on processing, feed one pair of inputs

(instead of just one input) to multiple DPI systems (instead of just

one DPI), and check whether the internal state changes of different

DPI systems are consistent. If one DPI system shows different in-

ternal state transference for the given two inputs while all other

DPI systems show the same transference, we will treat the new

state reached by the first DPI system as abnormal. For the pair of

inputs, one is generated from another through random mutations.

In this way, we successfully use the state-discrepancies to guide our

further mutations, decide and select the strategies for the following

generations.

To understand the strength of state-discrepancy guidance, we ap-

plied StateDiver on 3 of themost famous open-source DPI systems,

specifically, Snort, Snort++
1
, and Suricata. StateDiver successfully

reproduced 8 previously known bypass strategies, and detected 8

previously unknown ones. We have reported all our findings to the

corresponding vendors. At the time of paper writing, we received

one CVE number for all reported issues. We compared StateDiver

with Geneva, the state-of-the-art fuzzing tool for detecting DPI bugs.

Experiments show that during 24-hour evaluation, StateDiver can

detect 2× more unique bugs, and explore 1.2× more unique state

transitions than the previous tool. StateDiver is 5× faster in find-

ing the first bypass strategies than Geneva. The result confirms

that StateDiver can effectively detect strategies bypassing DPI

systems.

We summarize our contributions as follows:

• New Feedback Mechanism. We propose a novel feedback

method, state discrepancy, to guide fuzzing DPI systems. Our

method achieves a good balance on highlighting the most inter-

esting mutations while avoiding dropping necessary ones.

• End-to-end System. We implement StateDiver, the first end-

to-end fuzzing platform that utilizes the state discrepancy to

guide network packet prioritization and mutation.

• New DPI Vulnerabilities. We apply StateDiver to 3 most fa-

mous open-source DPI systems, and discover 16 bypass strategies

(8 new and 8 previously known). We have reported all findings

and received one CVE.

2 BACKGROUND

2.1 Deep Packet Inspection

DPI is an advanced method of examining and managing network

traffic [23]. Conventional packet filtering (firewall like iptables [11])

can only analyze packets at or below the transport layer. DPI, how-

ever, is powerful enough to analyze contents in application layer

1
Notably, compared to Snort, Snort++ has rewritten its TCP protocol stack (see Section

5.1). Therefore, we treat Snort and Snort++ as two different DPI systems.
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or even encrypted data, providing a wider range of detectable pro-

tocols and finer identification granularity. DPI system rebuilds

data streams from network packets before performing application-

layer payloads examination [36]. The data streams are dynamically

parsed by the assigned protocol parser after the DPI system recog-

nizes the application layer protocol used in the packets. Then, the

DPI system performs pattern recognition on the results output by

the protocol parser. DPI system usually uses rule files to define the

contents (protocols, fields, and values) to identify and actions to take.

Specifically, the contents can be defined as the “www.example.com”

in Host field of HTTP protocol, the “PASV” in Command field of

FTP protocol, and so on. Actions are used to define how the DPI

system processes the packets it receives. For example, Suricata

[20] defines the following four actions: 1) Reject. Send RST error

packets to both sides of the connection. 2) Drop. Drop the packet.

3) Alert. Generate an alert. 4) Pass. Stop further inspection on the

connection. The following Suricata rule — reject tcp any any -> any

80 (msg: “Bad keyword detected”; content: “bad_url”; http_uri; sid:

1;), specifies to reject the connection (a.k.a., send RST packets to

both sides of the connection) if Suricata identifies that the HTTP

packet contains “bad_url” in its URL buffer.

2.2 Customized Protocol Stacks in DPI Systems

In order to rebuild data streams from network packets, DPI sys-

tems needs specific protocol implementation to track the state of

each connection and perform reconstruction at the right time. DPI

vendors usually customize their implementations on the protocol

stacks, for the following reasons.

• Generality Requirement. A DPI system usually works as a middle-

box between the clients and the servers, whose implementations of

protocol stacks are different (e.g., Windows and Linux operating

systems, different versions of Linux). Hence, it is necessary for DPI

vendors to implement their own customized universal protocol

stacks to cope with different systems.

• High Throughput Requirement. DPI systems need to continuously

process high-traffic data. Hence, DPI vendors normally would im-

plement simplified protocol stacks, instead of complete and complex

standard ones as specified by RFCs.

However, customizing the protocol stacksmay introduce security

risks. First, the DPI vendors usually implement their own protocol

stacks based on their human interpretation of the RFCs (written

in natural language). The incorrect human interpretation would

result in vulnerable implementation. Second, when simplifying the

protocol stacks, DPI vendors might ignore certain security checks

defined in the RFCs intentionally or unintentionally. Therefore, the

processing logic for the same packet sequences might be different in

the DPI systems and the clients/servers. Consequently, it is possible

to evade the DPI system’s inspection (e.g., blocking certain packets)

with carefully constructed packet sequences [47].

2.3 Fuzzing

Fuzzing is a test technique to verify program functionalities and de-

tect vulnerabilities automatically [1, 10, 12, 21]. It involves inputting

massive amounts of random data to the test target trying to make

it behave abnormally (e.g., crash or error execution). Fuzzing has

found thousands of vulnerabilities in various applications [2, 4, 10].

There are different fuzzing strategies, which can be roughly classi-

fied as follows [49]:

Generation-Based and Mutation-Based Fuzzing. Generation-

based fuzzing generates inputs from scratch based on grammars

or valid corpus. However, mutation-based fuzzing starts with ran-

domly generated inputs, then it mutates existing inputs to get new

inputs. Mutation-based fuzzing relies on properly feedback mech-

anism to identify promising mutations from randomly generated

inputs.

Black-Box, Grey-Box, and White-Box Fuzzing. Based on the

amount of information observed during execution. Black-box

fuzzing does not have any knowledge about the internal states.

White-box fuzzing knows all the internal knowledge to explore

more state space of target programs. Grey-box fuzzing obtains the

knowledge between these two techniques.

3 THREAT MODEL AND MOTIVATION

In this section, we present the threat model we considered to bypass

a DPI system and the flaw example that motivates our work.

3.1 Threat Model

As shown in Figure 1, a DPI system is usually deployed between the

user/client and the server to monitor all the transferred packets. As

we discussed in Section 2.1, the DPI system tracks the TCP states

of a session to determine how to process the packets it receives. In

specific, the DPI system internally records the TCP states of both

the client and the server, and decides to block or forward certain

packets under different states based on the configured rules.

DPI ServerClient DPI System ServerClient

Figure 1: Threat Model

In this paper, we assume the DPI system is configured with a

rule to block packets containing certain sensitive string (a.k.a. the

keyword) in the application layer (e.g., HTTP, FTP). That is, once

a DPI system receives a packet containing the keyword, it would

drop the packet immediately. Such a configuration is usually used

to block access to sensitive (probably malicious) URLs. We consider

the adversary as a malicious user or an attacker that attempts to

bypass the restriction of the DPI system. The adversary would send

arbitrary packets to the DPI system to disrupt the DPI system’s

internal state to render the DPI system entering an abnormal state

under which a packet containing the forbidden keyword would be

forwarded to the server by the DPI system (instead of blocking the

packet).

3.2 The Motivating Example

Figure 2 illustrates the RST_Bad_Timestamp bypass strategy that

motivates us to systematically study the relationship between the

DPI system’s internal state transference and the bypass of the block-

ing rule. Specifically, a malicious user can leverage this strategy to
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Client ServerDPI

SYN, ACK TSval(Sa), TSecr(1000)②

SYN TSval(1000), TSecr(0)①

RST TSval(0), TSecr(Sa)③

ACK TSval(Sb), TSecr(3000)⑥

ACK TSval(2000), TSecr(Sa)④

⑤ PSH, ACK TSval(3000), TSecr(Sa) GET

⑦ ACK TSval(Sc), TSecr(3000) HTTP 200 OK

Figure 2: Packet Sequences of RST_Bad_Timestamp

𝑆𝑎 , 𝑆𝑏 and 𝑆𝑐 are local timestamp in the server-side when the

server sends the packet. 1000, 0, 2000, 3000 are values that we

artificially constructed to bypass the DPI system.

construct packets to access the network services that are meant to

be forbidden by Snort.

The Different Actions of Snort and Suricata under the Same

Strategy. Snort and Suricata are two of the most popular open-

source DPI systems. We applied the RST_Bad_Timestamp strategy

to both of them. As shown in Figure 2, the strategy inserts a RST

packet with a corrupted TCP timestamp option (Packet 3○) during

the 3-way handshake right after receiving SYN-ACK packet from

the server. Result shows that Snort is bypassed, while Suricata can

successfully detect and drop the packet containing the forbidden

keyword.

Root Cause Analyses. To figure out the reason why Snort and

Suricata act differently under the same RST_Bad_Timestamp strat-

egy, we manually investigated the TCP implementations in Snort,

Suricata, and the server (e.g., the Linux kernel’s TCP stack), as well

as the TCP RFC documents. As documented in RFC1323 [14] and

RFC7323 [15], TCP timestamp option contains two 32-bit times-

tamp field: TS Value (TSval) represents the local timestamp of the

sender when sending the packet, and TS Echo Reply (TSecr) repre-

sents the value of TSval in the sender’s last received packet. If we

craft packets according to the RST_Bad_Timestamp strategy, that is,

sending a RST packet with a smaller TSval value (0 in Figure 2), the

server would treat the packet as invalid as the TSval is smaller than

1000 (Packet 1○) and stays at the state to wait for the ACK packet

of the 3-way handshake. Similarly, Suricata, which is implemented

with correct timestamp verification, would ignore the above RST

packet like the server does. Hence, Suricata cannot be bypassed.

However, Snort is implemented to assume the server would close

the connection after receiving the RST packet. Therefore, Snort

tears down the TCB (TCP control block) of the connection, and

stops further detection on the connection, which opens a door for

bypassing attack — the attacker sends a packet containing the for-

bidden keyword after Snort tears down the TCB and successfully

reaches/accesses the forbidden server/service.

The Different State Transference under the Same Strategy.

Observing the different actions in the two DPI systems, we, then,

Table 1: State Transference of Snort and Suricata under the

RST_Bad_Timestamp Strategy

No. Packet Direction Snort Suricata

1○ SYN

TSval(1000) TSecr(0)

To Server

𝑆𝑛𝑐 : SYN_SENT

𝑆𝑛𝑠 : LISTEN
𝑆𝑢𝑠𝑡 : SYN_SENT

2○ SYN, ACK

TSval(𝑆𝑎) TSecr(1000)
To Client

𝑆𝑛𝑐 : SYN_SENT

𝑆𝑛𝑠 : LISTEN⇒SYN_RCVD

𝑆𝑢𝑠𝑡 : SYN_SENT⇒SYN_RCVD

3○ RST

TSval(0) TSecr(𝑆𝑎)
To Server

𝑆𝑛𝑐 : SYN_SENT⇒CLOSED

𝑆𝑛𝑠 : SYN_RCVD

4○ ACK

TSval(2000) TSecr(𝑆𝑎)
To Server 𝑆𝑢𝑠𝑡 : SYN_RCVD⇒ESTABLISHED

5○ GET

TSval(3000) TSecr(𝑆𝑎)
To Server

6○ ACK

TSval(𝑆𝑏 ) TSecr(3000)
To Client

7○ HTTP 200 OK

TSval(𝑆𝑐 ) TSecr(3000)
To Client

Snort uses two variables to represent endhosts’ (Client and Server)

states. For convenience, we call them 𝑆𝑛𝑐 and 𝑆𝑛𝑠 , respectively.

Suricata only uses one to represent state, we call it 𝑆𝑢𝑠𝑡 .

An empty cell indicates no change in the values of the variables.

take a closer look at the internal state transference of the two DPI

systems when each packet goes through. As Table 1 shows, when

the first two packets of the 3-way handshake (Packet 1○ and Packet

2○) go through, the two DPIs have the same state transference. How-

ever, when the RST packet with corrupted timestamp goes through

(Packet 3○), Snort changes 𝑆𝑛𝑐 from SYN_SENT to CLOSED, while

Suricata remains unchanged. By the time the ACK of 3-way hand-

shake arrives (Packet 4○), Snort is in unestablished state (𝑆𝑛𝑐 is

CLOSED and 𝑆𝑛𝑠 is SYN_RCVD) while Suricata reaches established

state.

To summarize, Packet 3○ causes Snort to reach an abnormal

internal state, which finally leads to the evasion. However, a safe

DPI (e.g., Suricata) does not show such changes in its internal state.

Therefore, if we could identify and prioritize the packets that trigger

the DPI’s internal state transfer to abnormal internal state, we could

increase the chances of reaching the final bypass.

The question now is, without requiring a deep understanding

of the tested DPI system (e.g., to identify the DPI system’s internal

abnormal states) and the protocol details (e.g., to determine the

correct protocol state transference), how canwe effectively generate

packets that could drive the DPI system’s internal state transfer to

abnormal state?

Our analyses on the RST_Bad_Timestamp strategy (e.g., incon-

sistent state transference in different DPI systems under the same

strategy) inspired us to include multiple DPI systems for vulnera-

bility discovery. That is, using the differential testing technique to

help us overcome such challenges.

Specifically, we can feed one pair of inputs (instead of just one

input) to multiple DPI systems (instead of just one DPI system), and

check whether the internal state changes of different DPI systems

are consistent. If one DPI system shows different state transference

for the given two inputs while all other DPI systems show the same

transference, we could treat the new state reached by the first DPI

system as abnormal, without the need of further investigation on

whether the state is benign or abnormal. For the pair of inputs, one

is generated by the other through random mutation. In specific,

we leverage the state-discrepancy to guide our further mutations

— prioritizing the aforementioned inputs/strategies that trigger
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Strategy Selector

Mutator

DPI1

State Change Tracker

Server

State Change 

Analyzer

Communicator

Packet Sequences

Communicator

Packet Sequences

DPI0

State Change Tracker

DPI0

State Change Tracker

Make Requests

Trace Files

Figure 3: The Architecture of StateDiver

inconsistent state transference for further mutations to generate

the following generations.

4 SYSTEM DESIGN AND IMPLEMENTATION

4.1 Overview

Figure 3 shows the architecture of StateDiver, which contains the

following modules:

• State Change Tracker. We perform state instrumentation in

DPI systems. It tracks the state transition in DPI systems and

generates trace files. Details are defined in Section 4.2.

• Mutator. This module mutates the strategy we select from the

Strategy Selector. Mutations combine both packet-level mutations

and sequence-level mutations. Details are defined in Section 4.3.

• Communicator. This module tries to communicate with the

server under the surveillance of DPI systems. It tries to make a

HTTP request to the server containing keyword in DPI block list.

If Communicator receives reset packet, that could mean the DPI

system recognizes the forbidden keyword and tears down the

connection (by sending RST reset packets to each endhost), or it

could mean that the server cannot process the packet sequences

and establish the TCP connection (i.e. the server sends the RST

reset packet to the client representing the failure of making an

established TCP connection). We don’t make a special distinction

between these two possibilities. If Communicator receives HTTP

Status 200 (OK) status code, we consider it as a successful bypass

strategy.

• State Change Analyzer. This module receives trace files from

DPI systems and evaluates strategies (i.e., the mutations). In

the process of mutation, it leverages trace files from previous

and current generation, using state-discrepancies as standard to

judge whether the mutation is positive, and guide our further

mutations. Details are defined in Section 4.4.

• Strategy Selector. We implement Strategy Selector following

the ideas of the queue schedule algorithm in AFL [1], one of the

most popular and successful grey-box fuzzer.

Network Topology.Our development involves the participation of

two DPI systems, for the convenience of description, we name them

DPI0 andDPI1.We set DPI0 inline IPS (Intrusion Prevention System)

mode, which is directly in the traffic path and has the ability to

manipulate the packet (e.g. drop the packet or send RST packets and

reset the connection). We set DPI1 IDS (Intrusion Detection System)

mode, which will receive a copy of the packet sequences going

through DPI0. But it cannot modify the packet, just raise the alert.

Both DPI systems are able to fully see the travel-through packets

and perform application-level detection based on respective TCP

implementations. They are given the same keyword to detect. The

only difference is their action as detecting the forbidden behavior.

Once DPI0 detects the threat, the connection will be terminated

immediately. It first intuitively tells us whether the strategy has

caused a bypass attack in DPI0.We don’t need to check DPI system’s

log to find out whether it is alerted, which improves the test speed.

Secondly, it freezes the state transitions from the initialization of

the connection until the connection is blocked. We can take the

trace files to perform discrepancies-guided fuzzing.

Differential testing requires both systems to receive the same in-

put. This is inherently difficult to implement in our live-packets net-

work scenario, because if a request is actually sent multiple times, it

cannot be guaranteed to be exactly the same due to the disturbance

and uncertainty of the network connection. The elements of TCP,

such as sequence number, checksum etc., are random-generated

or related to each part of the packet. Previous works make a lot of

effort on eliminating the non-determinism factors in different pro-

tocols [41, 47]. In our network topology, all DPI systems capture the

same sequence of travel-through packets. It is unnecessary making

the “same” request again, which improves system efficiency.

Workflow of StateDiver. Our system starts with Strategy Se-

lector. At the beginning, it generates some strategies randomly,

adds to its seed corpus and performs dry run, where mutation is

not involved, just crafting packets and sending them to the server,

in order to get trace files of each prime strategy. After that, the

main loop starts, with one strategy from seed corpus starting to

mutate and generating its offspring-strategies in Mutator. Each of

the offspring-strategies forms packet sequences in Communicator.

These packet sequences are sent to the server under the surveillance

of DPI systems. When each tested packet sequences are finished

sending, trace files containing DPIs inner state transitions will be

generated from State Change Tracker module and will be gathered

in State Change Analyzer. State Change Analyzer gives an evalua-

tion of the strategy according to the state transitions of the parent

strategy as well as the current strategy in different DPI systems.

The result mainly determines the priority and the frequency of the

next mutation, and whether the current strategy should be retained.

It then adds the current strategy to the seed corpus if necessary.

After completing the evaluation of all offspring-strategies, Strat-

egy Selector will select the next promising strategy, and repeat the

previous actions.

4.2 State Instrumentation

In AFL [1], instrumentation is performed in compilation time, and

is injected into compiled programs to capture branch (edge) cover-

age as well as coarse branch-taken hit counts. Similar to this, State

instrumentation aims at getting DPI’s inner state transitions, and is

performed in preprocessing stage. To accomplish this, we leverage

debugging information in open-source DPI systems. The debug

option is designed for developers in open-source DPI systems and

is used to debug different modules of DPI, which precisely reflects

changes of variables, including variables representing the states of

endhosts. The similar setting exists in all the open-source DPI sys-

tems we investigate. To get more subtle state changes, we manually
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add more codes in TCP state processing functions, especially in

packet accept point, packet drop point, and function return point,

where state changes are most likely to occur. This modification only

involves light manual effort and will be discussed in more detail in

Section 6. Finally, we compile the DPI system with specific param-

eters set. Our module will extract the state changes and output a

trace file containing them.

4.3 Mutations

We refer to Geneva [25] and use its mutation methods for packets.

Here we briefly introduce its composition. Strategies in Geneva

comprise a set of (Trigger, Action Tree) pairs. It is a description that

tells our system how it should manipulate network traffic. Packets

that match a given Trigger are modified using the corresponding

sequence of actions in an Action Tree, and then sent on wire.

Triggers. Trigger describes which packets the action tree should

run on. The syntax of Triggers is: [PROTOCOL:FIELD:VALUE]. For

example, [TCP:flags:PA] represents that the follow-up Action Tree

will manipulate the packet where the TCP filed flags are set to

PSH-ACK. Triggers perform exact match, so packets with ACK flag

will not match this trigger, only packets with both ACK flag and

PSH flag.

Actions. Action Tree specifies the manipulation that happens to

the packets which fire the Trigger. There are four mutate actions

and their respective syntaxes, which are the basic elements to make

up the Action Tree. Different mutate actions can be nested within

each other and form the action sequence.We use𝐴1,𝐴2 to represent

different action sequences:

• duplicate(𝐴1,𝐴2): takes one packet and returns two copies of

the packet. Action sequence𝐴1 will be applied to the first packet

and 𝐴2 will be applied to the second one.

• drop: takes one packet and drops the packet.

• tamper{protocol:field:mode}(𝐴1): takes one packet and re-

turns the modified packet. tamper has two modes: replace and

corrupt. replace sets the given field of the packet to a specified

value, while corrupt generates a random value to fill the given

field. Action sequence 𝐴1 can be applied to the packet.

• fragment{protocol:offset:order}(𝐴1,𝐴2): takes one packet and

returns two fragments or two segments (depending on the given

protocol is TCP or IP). offset represents where to split the packet

and order represents whether the two data packets after cutting

are in order or reverse order. Action sequence 𝐴1 will be applied

to the first packet and 𝐴2 will be applied to the second one.

Example.Herewe use the following example to illustrateGeneva’s

syntax:

Strategy 1 RST_Bad_MD5

[TCP:flags:A]-duplicate(,tamper{TCP:options-

md5header:corrupt}(tamper{TCP:flags:replace:R},))-| \/

This example strategy duplicates the outgoing ACK packets,

sends the first copy of the packet unaltered, modifies the duplicate

one’s TCP option MD5 field with a random number and replaces

its TCP flag to RST before sending it.

4.4 State Discrepancy Guidance

The algorithm is shown in Algorithm 1. As the previous subsection

4.1 described, State Change Analyzer performs differential analysis

with four different trace files, that is, two trace files generated by

the current strategy in two DPIs (currDPI0Stat and currDPI1Stat),

and two trace files generated by the parent of the current strat-

egy (parDPI0Stat and parDPI1Stat). We use the complete packet

sequences caused by the strategy as the smallest unit of comparison.

The algorithm consists of twomain parts. First, we perform CmpDPI

in the same DPI but in different generation strategies. We use the

result to confirm whether the newly mutated strategy has caused

new state transference in the same DPI compared to the old one,

and the result is stored in bool value DPI0StatAlt and DPI1StatAlt.

For example, if the parent strategy and the current strategy cause

the same state transference in DPI0, then the DPI0StatAlt is set as

False. That means DPI1 has the same state transference before and

after mutation. Then, we evaluate the current strategy based on the

results of the first step (line 3-9). If one of their values is True and

the other is False. It reveals the fact that, as the mutation happens

from parent strategy to current strategy, in one DPI system the state

transference stays the same, but in the other DPI it changes. This

may happen due to different processing logic and judging criteria

in different DPI systems’ TCP implementations, which is exactly

what we hope to happen. We prioritize the current strategy for

future generations. If in the second branch (line 5-6), it reveals that

our mutation is making progress and DPI systems reach further dif-

ferent stages. We consider this kind of mutation is slightly weaker

than the top-rated mutation, but still a good mutation. In the last

scenario (line 7-8), we consider the mutation is moderate, since it

doesn’t arouse changes in DPI systems. At this point, State Change

Analyzer completes the evaluation of the current strategy. If the

strategy gets best score, the system will take actions to make it

mutate earlier or mutate more times in the next round.

Moderate strategy needs to be analyzed to determine whether

to add it to the seed corpus or discard it directly. For example, we

will discard the strategy if the mutation just changes the action

fragment offset value from one-third to one-half. That means purely

numerical changes in some fields cannot cause the discrepancy of

state transitions.

A slight challenge arises from the fact that what if the muta-

tion proceeds backward in the original direction. We handle it by

using hash values of joint state transitions between different gener-

ations, which prevents past strategies from being preserved as new

strategies.

5 RESULTS AND EVALUATION

Our evaluation tries to answer the following questions:

• Can StateDiver generally apply to different real-world DPI

systems and discover bypasses? (Section 5.2)

• Can state-discrepancy guidance improve fuzzing effectiveness?

(Section 5.3)

• How does StateDiver perform compared with the previous

state-of-the-art evasion works? (Section 5.4)
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Algorithm 1 Differential Analysis

1: 𝐷𝑃𝐼0𝑆𝑡𝑎𝑡𝐴𝑙𝑡 ← 𝐶𝑚𝑝𝐷𝑃𝐼 (𝑝𝑎𝑟𝐷𝑃𝐼0𝑆𝑡𝑎𝑡, 𝑐𝑢𝑟𝑟𝐷𝑃𝐼0𝑆𝑡𝑎𝑡)
2: 𝐷𝑃𝐼1𝑆𝑡𝑎𝑡𝐴𝑙𝑡 ← 𝐶𝑚𝑝𝐷𝑃𝐼 (𝑝𝑎𝑟𝐷𝑃𝐼1𝑆𝑡𝑎𝑡, 𝑐𝑢𝑟𝑟𝐷𝑃𝐼1𝑆𝑡𝑎𝑡)
3: if 𝐷𝑃𝐼0𝑆𝑡𝑎𝑡𝐴𝑙𝑡 is 𝑇𝑟𝑢𝑒 xor 𝐷𝑃𝐼1𝑆𝑡𝑎𝑡𝐴𝑙𝑡 is 𝑇𝑟𝑢𝑒 then

4: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 ← 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒

5: else if 𝐷𝑃𝐼0𝑆𝑡𝑎𝑡𝐴𝑙𝑡 is 𝑇𝑟𝑢𝑒 and 𝐷𝑃𝐼1𝑆𝑡𝑎𝑡𝐴𝑙𝑡 is 𝑇𝑟𝑢𝑒 then

6: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 ← 𝑔𝑜𝑜𝑑_𝑠𝑐𝑜𝑟𝑒

7: else if 𝐷𝑃𝐼0𝑆𝑡𝑎𝑡𝐴𝑙𝑡 is 𝐹𝑎𝑙𝑠𝑒 and 𝐷𝑃𝐼1𝑆𝑡𝑎𝑡𝐴𝑙𝑡 is 𝐹𝑎𝑙𝑠𝑒 then

8: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 ←𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒_𝑠𝑐𝑜𝑟𝑒

9: end if

10: return 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛

5.1 Experiment Setup

Our evaluation of StateDiver runs on a machine with 8 cores

Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz , and 32GB memory. We

use VMware Workstation Pro 16 and employ four virtual machines.

The settings details are in Table 9. The OS in virtual machines is

Ubuntu 18.04.5 LTS 64-bit, and the Linux kernel version is 5.4.0-

81-generic. We experiment locally to reduce the effects of network

latency and ensure no machines will be exposed to a real attack.

We applied our system to 3 famous open-source DPI systems,

Snort [18], Snort++ [17], and Suricata [20]. As the website [17]

illustrated, Snort++ has rewritten TCP handling and has a fully

stateful HTTP inspector. It also has changed the programming

language from C to C++. So we treated Snort and Snort++ as two

different DPI systems.

We downloaded the latest version of Snort (2.9.19), Snort++

(3.1.31), and Suricata (6.0.3) at the time of writing. We first per-

formed state instrumentation. It took us less than two hours to do

the state instrumentation in each DPI system, and should take less

efforts for someone with experience. We selected DPIs, configured

our network topology, and ran the tests. StateDiver tries to make

HTTP request with bad keyword “bad_url”. DPIs enable rules to

detect “bad_url” keyword in HTTP layer. We ran each test for 24h

and repeated this process five times.

5.2 Identified Bypasses by StateDiver

As shown in Table 4, StateDiver has successfully identified 16

bypass strategies among 3 DPI systems, including 10 from Snort,

12 from Snort++, and 1 from Suricata. At the time of paper writing,

1 CVE is assigned. In the following case studies, we discuss some

of the representative bugs to understand how StateDiver can find

these bypasses and how these bypasses work in DPI systems.

Case Study 1: SYN_Bad_MD5. StateDiver identified this bypass

strategy in Snort, shown in Strategy 2. It has two Action Trees, both

triggered on packets with the ACK flag. The first one duplicates the

packets and sends the original and its copy. The second Action Tree

first modifies TCP MD5 option field with a random md5 value, then

it changes TCP flags from ACK to SYN and sends it on the wire.

This strategy can elude Snort successfully. Our deeper analysis of

this strategy reveals the reasons for its success. Snort will stop

further detection when it gets SYN packet on established stream

and consider all the SYN packet on established stream will cause

RESET on the other endhost, which is not true in all situations.

The server does not accept the SYN packet once the connection

is established, however, it performs an MD5 check and ignores

packets with invalid MD5 value, while Snort doesn’t. This strategy

manipulates the last packet of 3-way handshake with the ACK

flag set. Sending the original and its copy, which completes 3-way

handshake. Then it sends the packet with SYN flag and random

TCP MD5 value, which Snort accepts but the server ignores. The

connection is still intact but Snort will not perform further detection,

which leads to the success evasion.

Strategy 2 SYN_Bad_MD5

[TCP:flags:A]-duplicate-| [TCP:flags:A]-tamper{

TCP:options-md5header:corrupt }(tamper{TCP:flags:replace:S},)-| \/

Now we try to illustrate why our state-discrepancy guidance is

effective in discovering this bypass. During the mutation process,

we record the mutation sequence of the same strategy and trace files

for analysis. After refinement, the strategy and trace files of each

strategy are in Table 2. We use A, A’, and A” to represent different

strategies in the mutation chain. The process of mutation over time

is from A through A’ to A” (i.e., A generates A’, and A’ generates A”).

As defined in Table 2, we use 𝑆𝑛𝑐 and 𝑆𝑛𝑠 to represent Snort state

variables, use 𝑆𝑢𝑠𝑡 to represent Suricata state variable. For example,

row 1 in Table 2 means, that when strategy A is being tested, the

state transference chain in Snort is, 𝑆𝑛𝑐 : SYN_SENT to CLOSED.

𝑆𝑛𝑠 : LISTEN to SYN_RCVD. The state transference chain in Suricata

is SYN_SENT to SYN_RCVD. When strategy A generates strategy

A’ through mutation, it mutates the strategy’s second Trigger from

SYN flag to ACK flag. Different state transference occurs at both

DPIs when compared with strategy A (We marked in Table 2 with

a different typeface). Our system then saves strategy A’ for further

mutation, since it causes different state transference in both DPIs.

We think it is a positive sign to go deeper into the internal state

of the DPI system and fully explore it. When strategy A’ generates

strategy A”, the strategy’s Action Tree is mutated from corrupting

TCP timestamp option to corrupting TCP MD5 options, it leads 𝑆𝑛𝑐
to reach CLOSED after ESTABLISHED. At this point Suricata‘s state

transference 𝑆𝑢𝑠𝑡 is not changed at all, which represents Snort has

different behavior than Suricata when facing the same sequences

of packets generated by strategy A”, and finally leads to evasion.

Strategy A” will also be saved for future mutation. Our solution

contributes to the mutation process by saving strategies like A’ and

A”. Looking forward to finding strategies causing different state

transference.

Case Study 2: FIN_With_Data. StateDiver identified this strat-

egy in Snort, described in Strategy 3. It duplicates the PSH-ACK

packet, which contains the HTTP GET request. The strategy

changes the first packet’s TCP flags from PSH-ACK to FIN, frag-

ments it into two TCP segments, remains the second packet unal-

tered, then sends these three packets on wire.

Strategy 3 FIN_With_Data

[TCP:flags:PA]-duplicate(tamper{

TCP:flags:replace:F}(fragment{tcp:-1:True},),)-| \/

As RFC793 [16] mentions, once a TCP connection is established,

the ACK flag is always sent. The server will ignore all packets with
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Table 2: Mutation Process and Trace Files of SYN_Bad_MD5

Strategy Strategy Code Snort Trace Suricata Trace

A

[TCP:flags:A]-duplicate-|

[TCP:flags:S]-tamper{TCP:options-timestamp:corrupt}

(tamper{TCP:flags:replace:S},)-| \/

𝑆𝑛𝑐 : SYN_SENT⇒CLOSED

𝑆𝑛𝑠 : LISTEN⇒SYN_RCVD
𝑆𝑢𝑠𝑡 : SYN_SENT⇒SYN_RCVD

A’

[TCP:flags:A]-duplicate-|

[TCP:flags:A]-tamper{TCP:options-timestamp:corrupt}

(tamper{TCP:flags:replace:S},)-| \/

𝑆𝑛𝑐 : SYN_SENT⇒ESTABLISHED
𝑆𝑛𝑠 : LISTEN⇒SYN_RCVD⇒ESTABLISHED

𝑆𝑢𝑠𝑡 : SYN_SENT⇒SYN_RCVD⇒ESTABLISHED

A”

[TCP:flags:A]-duplicate-|

[TCP:flags:A]-tamper{TCP:options-md5header:corrupt}
(tamper{TCP:flags:replace:S},)-| \/

𝑆𝑛𝑐 : SYN_SENT⇒ESTABLISHED⇒CLOSED
𝑆𝑛𝑠 : LISTEN⇒SYN_RCVD⇒ESTABLISHED

𝑆𝑢𝑠𝑡 : SYN_SENT⇒SYN_RCVD⇒ESTABLISHED

FIN flag but no ACK flag set. Snort, however, will change the inner

TCP state once it sees the FIN flag with or without the ACK flag.

This leads to the following bypass actions shown in Figure 4. After

the 3-way handshake (Packets 1○- 3○), the client sends a FIN packet

containing half of the HTTP request in Packet 1○, which turns

the DPI inner state from ESTABLISHED to FIN_WAIT_1, but the

application-layer payload in Packet 1○ is still added to Segment

List. Segment List is designed for reconstructing application-layer

payload to perform checks (e.g., HTTP inspection) if TCP segmenta-

tion occurs. Data that arrives first will enter Segment List and wait

for subsequent data’s arrival. Packet 5○ doesn’t contribute because

DPI doesn’t accept the second FIN packet and discards it. Packet 6○
is a PSH-ACK packet containing exactly the same HTTP payload

as Packet 4○. DPI treats it as overlapping with data in Packet 4○
and does not add it to the Segment List. Packet 7○means the server

confirms the arrival of Packet 6○. As RFC793 [16] describes, when

the state in FIN_WAIT_1 receives a packet with the ACK flag, it

will change itself to FIN_WAIT_2, representing the client is done

talking. DPI follows RFC793’s definition, and will not process any

further data carried by the following packets or add data to the

Segment List, believing that the server will not process them either.

Packet 8○, carries with the rest of the data, can successfully evade

DPI. Since the server ignores packet 4○ and packet 5○, its process

sequence is 1○- 3○- 4○(discard)- 5○(discard)- 6○- 8○. The connection

is still intact and the server can successfully answer the client’s

GET request.

Previous work [47] has disclosed a similar vulnerability in older

versions of Snort. Our research finds that, for evasion attacks related

to FIN packet in ESTABLISHED state, the conditions are relatively

harsh. In this strategy, FIN packet must carry certain data to prevent

DPI from entering the following situations: 1. Mark the connection

as CLOSED and drop the rest of the attack packets. 2. Still perform-

ing HTTP level detection when the packet goes through DPI right

after FIN packet.

We perform the same mutation process analysis as Strategy 2,

shown in Table 3. As the mutation proceeds. The strategy’s Action

Tree is changed by adding a duplicate action. This action causes

a new state (FIN_WAIT_1) to be added to the 𝑆𝑛𝑐 . We highlight

B’ for the reason that it raises state discrepancies between Snort

and Suricata, since Snort states migration changes but Suricata

remains the same. B’ reaches a stage where this bypass strategy is

nearly a success. As we can see from the root cause analysis, this

attack is very subtle to perform and not only depends on turning

𝑆𝑛𝑐 to FIN_WAIT_1. However, our state-discrepancy guidance cap-

tures this tiny success factor and prioritizes the strategy for further

mutations. Finally finding this evasion strategy in various cases.

Client ServerDPI

SYN, ACK②

ACK ack=a+data/2⑦

SYN①

ACK ack=a+data HTTP 200 OK⑨

ACK seq=a③

⑧ PSH, ACK seq=a+data/2 Host

⑥ PSH, ACK seq=a GET /

⑤ FIN seq=a+data/2 Host

④ FIN seq=a GET /

Figure 4: Packet Sequences of FIN_With_Data
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Figure 5: Unique Bypasses Founded by Evaluated Fuzzers for

24h in Snort

5.3 Contributions of State Discrepancies

To understand the contributions of state-discrepancy guidance in

fuzzing, we perform unit tests by comparing StateDiver, Geneva,

Geneva-fast, and Geneva-state. Geneva [25] is designed by Bock

et al. to perform fuzzing on real-network DPI leveraging DPI-side

or server-side responses. Since we test locally, we modify the codes

to make it run faster and suitable for local tests, we name it Geneva-

fast. Geneva-state is Geneva with responses guidance removed
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Table 3: Mutation Process and Trace Files of FIN_With_Data

Strategy Strategy Code Snort Trace Suricata Trace

B [TCP:flags:PA]-tamper{TCP:flags:replace:F}-| \/

𝑆𝑛𝑐 : SYN_SENT⇒ESTABLISHED

𝑆𝑛𝑠 : LISTEN⇒SYN_RCVD⇒ESTABLISHED
𝑆𝑢𝑠𝑡 : SYN_SENT⇒SYN_RCVD⇒ESTABLISHED

B’ [TCP:flags:PA]-duplicate(tamper{TCP:flags:replace:F},)-| \/
𝑆𝑛𝑐 : SYN_SENT⇒ESTABLISHED⇒FIN_WAIT_1
𝑆𝑛𝑠 : LISTEN⇒SYN_RCVD⇒ESTABLISHED

𝑆𝑢𝑠𝑡 : SYN_SENT⇒SYN_RCVD⇒ESTABLISHED

B”

[TCP:flags:PA]-duplicate(tamper{TCP:flags:replace:F}

(fragment{tcp:-1:True},),)-| \/
𝑆𝑛𝑐 : SYN_SENT⇒ESTABLISHED⇒FIN_WAIT_1⇒FIN_WAIT_2
𝑆𝑛𝑠 : LISTEN⇒SYN_RCVD⇒ESTABLISHED

𝑆𝑢𝑠𝑡 : SYN_SENT⇒SYN_RCVD⇒ESTABLISHED

Table 4: Bypass Identified by StateDiver

Affected DPI

Strategy Name Strategy Code Illustration

Snort Snort++ Suricata

△ RST_Bad_Timestamp

[TCP:flags:A]-duplicate(tamper{TCP:options-timestamp:corrupt}

(tamper{TCP:flags:replace:R},),)-| \/

Send RST with invalid TCP timestamp option ! ! !

△ RST/ACK_Bad_Timestamp

[TCP:flags:A]-duplicate(tamper{TCP:options-timestamp:corrupt}

(tamper{TCP:flags:replace:RA},),)-| \/

Send RST/ACK with invalid TCP timestamp option ! ! !

△ RST_Bad_MD5

[TCP:flags:A]-duplicate(tamper{TCP:options-md5header:corrupt}

(tamper{TCP:flags:replace:R},),)-| \/

Send RST with invalid TCP MD5 option ! !

△ RST/ACK_Bad_MD5

[TCP:flags:A]-duplicate(tamper{TCP:options-md5header:corrupt}

(tamper{TCP:flags:replace:RA},),)-| \/

Send RST/ACK with invalid TCP MD5 option ! !

△ Timestamp_Gap

[TCP:flags:PA:1]-fragment{tcp:-1:True}

(,tamper{TCP:options-timestamp:add:2147483648})-| \/

Send partial request with TCP timestamp option,

then send the remaining request with TCP

timestamp = last_timestamp + long gap (2147483648)

! !

△ RST/ACK_Bad_ACK_Number

[TCP:flags:A]-duplicate(tamper{TCP:flags:replace:RA}

(tamper{TCP:ack:corrupt},),)-| \/

Send RST with corrupted ACK number in ESTABLISHED state ! ! !

△ Multiple_SYNs [TCP:flags:A]-tamper{TCP:flags:replace:S}(tamper{TCP:seq:corrupt},)-| \/ Send another SYN with corrupted SEQ number in 3-way handshake !

△ TCB_Turnaround [TCP:flags:S]-fragment{tcp:-1:False}(tamper{TCP:flags:replace:SA},)-| \/ Send SYN/ACK before sending the SYN packet !

⋆ FIN_With_Data

[TCP:flags:PA:1]-duplicate(tamper{TCP:flags:replace:F}

(fragment{tcp:-1:True},),)-| \/

Send FIN with junk data in ESTABLISHED state, then send the request

in TCP segments

!

⋆ SYN_Bad_MD5

[TCP:flags:A]-duplicate-| [TCP:flags:A]-tamper

{TCP:options-md5header:corrupt}(tamper{TCP:flags:replace:S},)-| \/

Send SYN with invalid TCP MD5 option in ESTABLISHED state, then

send the request

! !

⋆ SYN_Fragment [TCP:flags:PA]-duplicate(fragment{tcp:-1:True}(,tamper{TCP:flags:replace:S}),)-| \/

Send junk data in ESTABLISHED state, then send SYN with junk data,

finally send the request

!

⋆ Fragment_And_Segment

[TCP:flags:PA]-fragment{tcp:7:True}(fragment{ip:-1:True}

(,duplicate),fragment{ip:-1:True}(duplicate,))-| \/

Combination of multiple IP fragmentations and TCP segmentations !

⋆ FIN_Bad_ACK_Number [TCP:flags:A]-tamper{TCP:ack:corrupt}(duplicate(tamper{TCP:flags:replace:F},),)-| \/

In SYN_RECV state, send FIN and ACK with same corrupted ACK number

successively, then send the request

!

⋆ ACK_Bad_ACK_Number_And_

Data_With_ Smaller_Timestamp

[TCP:flags:A]-fragment{tcp:-1:False}(,tamper{TCP:ack:corrupt}

(tamper{TCP:options-timestamp:add:-10},))-| \/

Send ACK with corrupted ACK number in ESTABLISHED state, then

send request with TCP timestamp = last_timestamp - gap (10)

!

⋆ ACK_Bad_MD5_And_

Data_With_Smaller_ Timestamp

[TCP:flags:A]-fragment{tcp:-1:True}-| [TCP:flags:A]-tamper{TCP:options-md5header:corrupt}

(tamper{TCP:options-timestamp:add:-10},)-| \/

Send ACK with invalid TCP MD5 option in ESTABLISHED state, then

send request with TCP timestamp = last_timestamp - gap (10)

!

⋆ PSH_Before_SYN [TCP:flags:S]-duplicate(tamper{TCP:flags:replace:P},)-| \/ Send PSH without data before 3-way handshake !

△ means previous known strategies, and⋆ means new strategies.

and add our state-discrepancy guidance. We compare them in three

different metrics: the number of unique bypasses, the speed of

bypass discoveries, and state transference collected through trace

files. We evaluate the number of unique bypasses as it can reflect

bypass finding capabilities. The speed can inform us of the efficiency

of fuzzing. For state transference collected through trace files, we

consider it can help us explain why our solution works better.

Unique Bypasses. We manually count the unique bypasses of each

run in 24h, and show the result in Figure 5, Figure 6, and Figure 7. To

save space, we put Figure 6 and Figure 7 in an appendix. We repeat

the experiments 5 times and each time lasts 24h. The solid dot lines

represent the mean of the result and the shadow around lines are

confidence intervals for five runs with 95% confidence level. State-

Diver identifies 62%, 380% more unique bypasses than Geneva in

Snort, Snort++ respectively. Even when compared with Geneva-

fast which generates mutations at the same speed, StateDiver

still identified 160%, 243% more unique bypasses than Geneva-fast.

Our experiment shows that Suricata takes better actions to prevent

bypass, where all test tools can only find the same bypass. However,

with state-discrepancy as guidance, StateDiver and Geneva-state

are more stable to rediscover the bypass strategy in every test.

StateDiver performs 901% and 248% faster finding the first bypass

than Geneva-fast in Snort and Suricata respectively. In Snort++

our solution is slightly slower, with an average of 0.18h finding the

first bypass than 0.08h in Geneva-fast. But our solutions can find

more unique bypasses over time, whereas the original solution can

only find a limited number of repeated strategies.

Unique State Transitions. As discussed in previous sections, all

DPIs we investigate have variables reflecting endhosts’ TCP state.

Their possible values are, or can be converted to eleven optional

states of TCP [16] (i.e., LISTEN, SYN_SENT, SYN_RCVD, ESTAB-

LISHED, CLOSE_WAIT, LAST_ACK, FIN_WAIT_1, FIN_WAIT_2,

TIME_WAIT, CLOSING and CLOSED). We use dots to represent

states, and use arrows to represent state transition (e.g., an arrow

from dot SYN_SENT to dot ESTABLISHED represents a packet that

makes the state variable of DPI shift from SYN_SENT to ESTAB-

LISHED), then it is possible for us to represent the transitions with

state model. For example, Figure 8 shows the state model of Snort

𝑆𝑛𝑐 in a single 24h test with Geneva, Geneva-fast, Geneva-state,

and StateDiver respectively. In each figure we merge all state

transitions produced by all strategies in 24h, then we calculate the

unique state transition in each figure. Whether comparing Fig. 8c

with Fig. 8a, or comparing Fig. 8d with Fig. 8b, state-discrepancy

guidance both performs richer state transitions. Note that our state

model is the transformation chain of the DPI internal state vari-

able, so it doesn’t exactly match standard TCP state changes due to

different vendors’ designs and modifications.

We repeat the experiments 5 times and each time lasts 24h, then

we calculate the average number of unique state transference dur-

ing the tests (i.e. the number of directed edges in each state model).
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Table 5: Numbers of Average Unique State Transference

Target DPI Variables Geneva Geneva-state Geneva-fast StateDiver

Snort

𝑆𝑛𝑐 15.8 19.8 25.0 29.4

𝑆𝑛𝑠 22.0 24.4 28.6 32.2

Snort++

𝑆𝑝𝑐 12.6 20.4 15.8 25.4

𝑆𝑝𝑠 20.8 25.4 27.2 31.4

Suricata 𝑆𝑢𝑠𝑡 13.6 18.8 26.4 34.0

Table 5 shows the result. Our solution can cause more unique state

transitions in all DPI systems. For example, when testing Snort, the

average number of unique state transference of 𝑆𝑛𝑐 reaches 29.4 us-

ing StateDiver, compared with 25.0 using Geneva-fast. A similar

result appears in different state variables and different DPI systems.

With more unique state transitions, we may have more potential

chances to explore areas that may cause state discrepancies, which

may lead to bypass vulnerabilities.

5.4 Comparison with State-of-the-art Elusion

Works

We conduct a detailed evaluation to compare StateDiver with

state-of-the-art results in evading DPI-like systems. Including

INTANG [46], lib·erate [38], Geneva [25], SymTCP [47] and

Themis [48]. In order to perform the evaluation, we use Wang’s

attack dataset [22], which implemented all the TCP-related evasion

strategies discovered in former works. We apply them to our target

DPI systems and summarize methods that can cause successful

evasion. Then we compare StateDiver with their works manually.

In Table 6, Table 7, and Table 8. ⋆ means new strategies. △
means previous known strategies.!means their paper mention

the strategy in their tool.!♯ means their paper do not mention,

but we ran out of this strategy in our experiments.

Table 6: Prior Work’s TCP-based Strategies and StateDiver

Found on Snort

Strategy Name INTANG lib·erate Geneva SymTCP Themis StateDiver

△ RST_Bad_Timestamp ! ! ! !

△ RST/ACK_Bad_Timestamp ! ! ! !

△ In_Window_FIN !

△ RST_Bad_MD5 ! ! ! !

△ RST/ACK_Bad_MD5 ! ! ! !

△ Timestamp_Gap ! !

△ Urgent_Data !

△ In_Window_RST !

△ MD5_FIN_ACK !

△ MD5_FIN_Bad_ACK !

△ Multiple_SYNs ! !

△ RST/ACK_Bad_ACK_Number ! ! !

△ RST_Bad_SEQ !

△ No_ACK_Flag_FIN !

△ RST_After_FIN !

△ SYN+FIN !

⋆ FIN_With_Data !

⋆ SYN_Bad_MD5 !

⋆ SYN_Fragment !♯ !

⋆ Fragment_And_Segment !♯ !

Table 7: Prior Work’s TCP-based Strategies and StateDiver

Found on Snort++

Strategy Name INTANG lib·erate Geneva SymTCP Themis StateDiver

△ RST_Bad_Timestamp ! ! ! !

△ RST/ACK_Bad_Timestamp ! ! ! !

△ RST_Bad_MD5 ! ! ! ! !

△ RST/ACK_Bad_MD5 ! ! ! ! !

△ RST/ACK_Bad_ACK_Number !♯ ! !

△ Timestamp_Gap ! !

△ In_Window_RST ! !

△ RST_After_FIN !

△ No_ACK_Flag_FIN ! !

△ In_Window_SYN !

△ TCB_Turnaround ! ! ! !

△ Multiple_SYNs ! ! ! !

⋆ SYN_Bad_MD5 !

⋆ FIN_Bad_ACK_Number !
⋆ ACK_Bad_ACK_Number_And_

Data_With_Smaller_Timestamp

!

⋆ ACK_Bad_MD5_And_Data_

With_Smaller_Timestamp

!

⋆ PSH_Before_SYN !

Table 8: Prior Work’s TCP-based Strategies and StateDiver

Found on Suricata

Strategy Name INTANG lib·erate Geneva SymTCP Themis StateDiver

△ RST_Bad_MD5 ! ! ! ! !

△ RST/ACK_Bad_MD5 ! ! ! ! !

△ SEQ_Number_Before_ISN !

As Table 6, Table 7, and Table 8 describe, from all previously

published strategies work on Snort, Snort++, and Suricata, State-

Diver discovered 6, 7, and 2 of them, respectively. StateDiver

also discovered 4 new strategies in Snort and 5 new strategies in

Snort++ that were not previously outlined.

6 DISCUSSION

Manual Effort to Analyze a New DPI. As described in Section

4.2, StateDiver performs state instrumentation and extracts trace

files from DPIs, using state-discrepancy as feedback to guide our

mutation. When facing a new DPI, in order to output trace files,

we enable debug options during the configuration process. In most

cases, the native debugging information can cover our needs. To

make it more elaborate, we add more codes in TCP processing func-

tions, especially in packet accept points, packet drop points, and

function return points, where state transference is most likely to oc-

cur. It took us around 1 hour, 1.5 hours, and 1 hour to perform state

instruction in our test DPIs. It will take less time if the developer is

experienced. We believe such manual efforts are acceptable.

Limitations. StateDiver is designed to leverage TCP-layer state

discrepancy to guide fuzzing DPI systems, it may be less effective

when finding bypass leveraging other layers’ discrepancies (e.g.,

HTTP-layer). It may also be hard to find a strategy that doesn’t

lead to the difference in TCP state transference. For example, the

urgent pointer strategy [47] sends a data packet with TCP URG

flag and urgent pointer set. Snort will ignore all application data

before the urgent pointer but Linux will only consume 1 byte of

urgent data and handle the rest of the data. While these packets

are being sent, it will not cause TCP-layer state discrepancies. It

may depend on higher network level discrepancies and additional
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research. TCPFuzz [52] relies on code coverage as feedback to find

semantic vulnerabilities. We tried a similar method and found the

following problems that are hard to balance. First, we performed

branch level, basic block level, and function level instrumentation

in DPIs, all of which appeared sensitive to identifying valuable

mutations from less promising ones. Second, unlike TCPFuzz tests

on TCP implementations which is easy to instrument, DPIs are

complex software containing detection logic, protocol logic, and

so on. Full instrumentation will bring many disturbances. So we

chose state discrepancy as the balanced feedback mechanism in

DPI testing. Last, we admit that the strategies discovered in this

paper work in limited circumstances. Wang et al. [48] pointed out

different behaviors between different versions of Linux kernels.

So some strategies may fail with different versions or systems.

However, state-discrepancy guidance and different versions are

not in conflict, because we focus on discrepancies between DPIs,

not DPI and endhosts. We can still find new bypass strategies with

state-discrepancy guidance.

Ethical Considerations. We performed the experiment locally so

no machines were exposed to a real attack. Besides, we announced

our findings only after contacting the vendors and hearing back

from the vendors. We acknowledge that finding new strategies

may increase potential attack opportunities for other untested DPIs

in this paper, since these strategies are likely to be effective on

many DPI systems at the same time, we believe that the value in

publishing these strategies will make the DPI systems we test more

robust and complete, and guide follow-up updates and fixes from

other DPI vendors.

7 RELATEDWORK

Fuzz Testing. Fuzz testing [9] is an automated software testing

technique that provides invalid, unexpected, or random data as

inputs to a computer program. The program is then monitored

for exceptions such as crashes, failing built-in code assertions, or

potential memory leaks. Fuzz testing plays an important role in the

discovery of different kinds of vulnerabilities in different fields, like

the well-known American Fuzzy Lop (AFL) [1] and its successor

AFLGo [26] in software vulnerabilities, Syzkaller [21] in kernel

vulnerabilities, and FIRM-AFL [51] in IoT devices threats. We found

that fuzzing for stateful network protocols is relatively rare, but

has grown in abundance in recent years. Boofuzz [3] is a Python

framework that allows users to specify protocol formats and per-

form fuzzing, which is generation-based fuzzing. But Boofuzz can

not perform transport layer mutation and is mostly designed to

fuzz application layer, which is not in our field. Joeri de Ruiter and

Erik Poll [35] used state machine learning to infer state machines

from protocol implementations, and then manually inspected the

inferred state machines to look for spurious behavior which might

be an indication of flaws. Also, they aimed at high-level protocol.

Their fuzzing only does part of the work, and the rest relies on

human observation of the state machine model. Pham et al. [39]

expanded AFL using server state as feedback to perform coverage-

guided grey-box fuzzing for protocol implementations in AFLnet.

They explored FTP and RTSP implementations using their work,

which highly relies on response codes to get the current protocol

state. It is not practicable for protocols that don’t have obvious re-

sponse codes (e.g., TCP). Zou et al. designed TCPFuzz [52] which is

also an extension of AFL. It uses a new code coverage metric named

branch transition as program feedback and leverages differential

testing to find semantic bugs. We find that low-level code coverage

as feedback is too sensitive to identify valuable mutations from less

promising ones in DPIs.

Deep Packet Inspection Evasion. Ptacek et al. [40] suggested that

middleboxes like DPIs are not capable of perfectly reconstructing

the data flow in the exact way that the endhost performs. Over the

years, many works have been working in this field [38, 46]. Wang

et al. [47] used symbolic execution to collect all execution paths

to accept points and drop points in Linux TCP implementations,

selected and generated packets that may lead to a discrepancy

between DPI and the tested server. Finally, they leveraged these

sequences to real DPI systems and outputted the valid sequences. It

requires manual analysis of Linux TCP stack and is heavily limited

by path explosion when performing symbolic execution. Reen and

Rossow [41] proposed a differential fuzzing framework to detect

strategies to elude stateful DPI systems for QUIC. It is a generation-

based fuzzer that does not use any feedback mechanism. Bock

et al. [25] used genetic algorithm to automatically detect evasion

strategies. Their tool prioritizes inputs that trigger different server-

side or DPI-side responses, which may miss intermediate mutations

that are necessary for final bypasses. These approaches by Bock et

al. [25] and Zou et al. [52] inspire us to find balanced feedback to

highlight the most important changes while not dropping necessary

mutations early. To the best of our knowledge, we are the first to

leverage state discrepancy to guide fuzzing DPI systems.

Protocol Reverse Engineering.There has been considerable work

on automated reverse engineering protocol state machines to per-

form a large number of security tasks, from bot detection to spam

detection [27, 29, 34, 44]. They propose languages to describe pro-

tocol specifications, handle multiple messages and recover the pro-

tocol’s state machine. However, protocol reverse engineering tends

to reveal a full image of the protocol’s state machine, which is not

necessary for our scenario. We are trying to uncover the discrep-

ancies between two different state machines and leverage them as

guidance to construct evasion packet sequences. Besides, compar-

ing state machines after reverse engineering requires heavy manual

work to identify possible evasion routes, which hinders large-scale

adoption from testing DPI systems [35]. In contrast, our solution is

automated to uncover evasion packet sequences.

8 CONCLUSION

In this paper, we propose StateDiver, the first end-to-end fuzzing

framework that uses state discrepancy between different DPI sys-

tems as feedback to discover strategies to bypass DPI systems. We

used StateDiver to test 3 popular open-source DPI systems and

discovered 16 bypass strategies. Our new understanding on the root

causes of bypassing DPI systems, a new feedback mechanism for

DPI fuzzing, and newly identified DPI vulnerabilities would help

enhance not only the current DPI systems but also those to be built

in the years to come.
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APPENDIX

Table 9: Environment Settings

VM’s No. VM’s Name Illustration RAM Cores

1 StateDiver Run our tool 16GB 4

2 DPI0 Run DPI0 6GB 2

3 DPI1 Run DPI1 6GB 2

4 Server Run a server 4GB 1
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Figure 6: Unique Bypasses Founded by Evaluated Fuzzers for

24h in Snort++
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Figure 7: Unique Bypasses Founded by Evaluated Fuzzers for

24h in Suricata
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Figure 8: Examples about Unique State Transitions during

the Test

TCP State: L - Listen, SS - SYN_SENT, SR - SYN_RECV, E -

ESTABLISHED, FW1 - FIN_WAIT_1, CW - CLOSE_WAIT, FW2 -

FIN_WAIT_2, LA - LAST_ACK, TW - TIME_WAIT, CD - CLOSED,

CG - CLOSING.

768


	Abstract
	1 Introduction
	2 Background
	2.1 Deep Packet Inspection
	2.2 Customized Protocol Stacks in DPI Systems
	2.3 Fuzzing

	3 Threat Model and Motivation
	3.1 Threat Model
	3.2 The Motivating Example

	4 System Design and Implementation
	4.1 Overview
	4.2 State Instrumentation
	4.3 Mutations
	4.4 State Discrepancy Guidance

	5 Results and Evaluation
	5.1 Experiment Setup
	5.2 Identified Bypasses by StateDiver
	5.3 Contributions of State Discrepancies
	5.4 Comparison with State-of-the-art Elusion Works

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

